

Applications of high-performance OEM CW and pulsed fiber lasers in precision manufacturing processes

Paul Harrison 26th June 2012

- Introduction to fiber lasers
- CW-M laser applications
 - Cutting
 - Welding
- Pulsed laser applications
 - Marking/engraving

Cladding-Pumped Fiber Lasers

Fiber Laser

Lasers

Solid-State Laser

- in-fiber FBGs form robust cavity
 no optical alignment
- large inner-cladding guides commercially available MM pumps
- RE-doped core converts lowbrightness pump to highbrightness signal beam
- core design defines the output beam quality
- Iong & slim –vs- short & fat
- no thermal effects tremendous potential for power scalability

• Parametric Performance

- High stability and linearity
- High beam quality
- Modulation range CW to 100kHz

• Ease of integration and operation

- Robust monolithic fiber architecture
- No user alignment or adjustments

• No preventive maintenance requirements

- High reliability single emitter pump diodes
- High energy efficiency
 - up to 10x equivalent Nd YAG lasers/CO₂ lasers
 - Single phase mains operation

Intensity vs Interaction time – Thermal regimes

25-200W Aircooled R4 100-500W Watercooled R4 500-1000W Watercooled

2 main application areas:

Cutting Welding

- 500W M² ~ 1.1 CW-M Laser
- 20µm core diameter, 100mm FL collimator, 125mm FL focusing lens

Beam caustic through focus @ 500W, spot size ~30µm dia

• Analog pulse shaping

Not to be distributed without prior consent of SPI Lasers UK Ltd

Mild Steel

2mm thick @ 2.6 m/min

Stainless Steel

0.5mm thick @ 20 m/min

Aluminium

1mm thick @ 2 m/min

5.3mm thick @ 0.9 m/min

1.5mm thick @ 1.25 m/min

- High speed thin section cutting
- Bright metals, ceramics cutting

Beam Quality Advantage of Singlemode for Fine Kerf Cutting

- High speed, high quality cutting of thin SS sheet
- Mainly electronics sector stencils, etc.
- High beam quality and pulse modulation enable increased productivity and finer detail
- Process parts have smooth, burr-free walls

0.2 mm wall thickness cut at 10 W, 1.2 m/min Courtesy LPL Systems

- Medical devices metal tube cutting
- "Repeatable quality is everything"
- Use PWM of laser beam to maintain constant power per mm of cut

Courtesy of Reliance Laser

RELIANCE

Courtesy of Miyachi Unitek Corporation

200W Fibre Laser λ=1.07um, M²<1.1

500W CO₂ Laser λ =10.6um, M²~1.3

High precision alumina substrates cut with 200W laser

- Welded-Wire "Crown" Stent
- Must be spatter-free

 Replacing high pulse energy welds with lower energy, better controlled CW-M pulses

2 mm OD tube 0.2 mm wall

1.8 mm diameter

1. 5 mm diam, 0.4 mm wall

- Introduction to Fiber lasers
- CW-M laser applications
 - Cutting
 - Welding
- Pulsed laser applications
 - Marking/engraving

- SPI's HS lasers offers true laser flexibility
 - Beam quality S,L & H types M²

- Tailored spot size, depth of field & energy distribution
- PulseTune pulse width control WF
 - 10-200ns pulse widths with 25 Waveforms
- High frequency range 1-1,000kHz kHz
 - HS lasers can operate from 1kHz 1MHz and also in CW mode
- No maintenance, air-cooled, no alignment, compact
- Standard 3 year warranty

Lasers Typical Pulsed Output – Q switch

- For a typical q-switched fiber laser, increasing pulse frequency results in decreased peak power
 -but constant Average Power
- Full pulse length constant

SPI Pulsed Laser Pulse Characteristics

- Can optimise peak power at higher rep rates by decreasing pulse length
- Each pulse length can operate at any frequency
- Provides an additional dimension of process control

Directly Modulated @ 20W

Increasing rep rate by using different Wave Forms

- limits peak power reduction by using shorter pulse length

Increased rep rate significantly affects peak power

- SPI has a range of beam qualities tailored for key applications
- The beam quality effects the focused spot size but note that this does not always reflect actual materials processing result.

		- Contraction of the second se	
Laser model	S-type	H-type	H-type
Beam Quality	1.2	1.9	3.2
Mode	0	0	0
Spot Size 1/e ² (calculated)	30 µm	45 µm	75 µm
Mark Diameter (measured)	33 µm	55 µm	75 µm
Image of single spot mark	33 UJITT	5	TO KATH
Hole Diameter (measured)	38 µm	45 µm	55 µm
Ceramic drilling surface hole size	SRAD 2	45.0µm	54.7μm

- Sample plate made using G4 20W L type laser
 - Standard setup163mm FL scan lens, 75mm collimator, focal spot Ø56µm (1/e²)
- All marks made at focus
- No mechanical changes between marks
 - Only changes are laser output parameters and scan speed

- Better stability of laser is demonstrated by good white marking
 - Homogenous areas without banding

Lasers G4 20W S-type – Brass Processing

- Range of colours can be produced, including:
- White / yellow (WF4)
- Brown (WF1)
- Grey (WF2)
- Dark grey (WF3)
- Pink
- Plus Engraving (WF1, WF5)

- Deep engraving of SS 316
- No perimeter ridge, steep walls
- High quality removal rate is 8.8 mm³/min
- High speed removal rate is 14.4 mm³/min

Lasers Colour Marking – DIME project

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

R

104 mm/s 5 W 75 kHz 120 ns f160, Ø 38 μm	84 mm/s 5 W 75 kHz 120 ns f160, Ø 38 µm	1200 mm/s 15 W 200 kHz 30 ns f160, Ø 64 µm	900 mm/s 15 W 200 kHz 30 ns f160, Ø 64 µm		
30 µm 32 s	30 µm 40 s	5 μm 17 s	10 μm 11 s		
20 W 125 kHz 65 ns f254 Ø 104 µm 30 µm 2 s	11 W x2 100 kHz 65 ns f254 Ø 104 μm 30 μm 33 s	12 W 100 kHz 65 ns f254 Ø 104 µm 30 µm 22 s	20 W 150 kHz 65 ns f254 Ø 104 µm 6,5 µm 15 s		
100 mm/s 11 W 100 kHz 65 ns f254 Ø 104 μm 30 μm 33 s	1000 mm/s 20 W 150 kHz 65 ns f254 Ø 104 μm 3,4 μm 29 s	510 mm/s 15 W 200 kHz 65 ns f254 Ø 104 μm 5 μm 39 s	1000 mm/s 10 W 150 kHz 65 ns f254 Ø 71 μm 2 μm 50 s	DIME	VTT Lappeenranta
1000 mm/s 20 W 150 kHz 65 ns f254 Ø 104 µm 7 µm 14 s	1000 mm/s 10 W 150 kHz 65 ns f254 Ø 71 μm 1,2 μm 83 s	50 mm/s 8 W 200 kHz 30 ns f254 Ø 104 μm 30 μm 67 s	50 mm/s 8 W x2 200 kHz 30 ns f254 Ø 104 μm 30 μm 133 s	Marking speed Average power Repetition rate Pulse width Optic, beam diameter Hatch	
Frame: 1000 mm/s, 20 W, 500 kHz, 200 ns, f160 Ø 38 μm, 30 μm			Marking time		

10 mm x 10 mm squares: parameters

- Fiber lasers have several distinct features which allow them to be used for many precision applications
 - High beam quality
 - Accurate beam control / modulation
 - Long term stability
 - PulseTune waveforms

Lasers Spot Overlap – the key to mark quality

No Spot Overlap poor resolution dotted-line

<5% Spot Overlap low resolution "scallop" edge

>60% Spot Overlap high resolution smooth line edge

Spot overlap is a key visual factor in determining mark quality

How to get greater spot overlap?

- Slow down the mark until the pulses overlap
- Increase the pulse repetition rate at your desired marking speed !

- Growing use of anodised materials
 - Giftware
 - Product ID
- Power = Productivity
 - Higher M² allows increased fill
 - Higher kHz allows higher speed
 - Higher WF enables removal at higher speed

• Process application determines incident spot size

- Laser materials processing is governed by:
 - **Peak pulse power** which is typically required to overcome processing thresholds. **(kW)**
 - **Pulse energy** which governs the amount of thermal energy available to effect any material processing. (mJ)
 - **Pulse duration** which impacts the beam material interaction time. **(ns)**
 - Power Density which reflects the intensity of the laser energy on the substrate. (J/cm²)
 - **Beam Quality** Energy distribution within the beam (M²)
- It is a combination of all of these parameters that needs to be considered.