High power ultra short pulse laser processing a new approach for high precision manufacturing

Dr.-Ing. Arnold Gillner

Fraunhofer Institut für Lasertechnik, Aachen

James Watt Institute – Innovative Manufacturing Research Center Conference 2012

Laser Based Production Processes

26th June 2012

From Milliseconds to Femtoseconds

Theodore Maiman (11.7.1927 – 5.5.2007)

Ivan Ruddock demonstrates the first Femtosecond-Dye-Laser. Imperial College, London, 1970

> Limited Application of Sophisticated and Expensive Research

Light Amplification by Stimulated Emission of Radiation

(Gordon Gould, 1957)

Ultra Short Pulse Lasers – A tool to overcome boundaries and explore new horizons

Thermal processing

Solution of 1d- heat conduction problem: $T(z,\tau) - T_0 = \frac{IA}{\lambda} \delta_{th}(\tau) ierfc \left(\frac{z}{\delta_{th}(\tau)}\right)$ $\delta_{th}(\tau) = \sqrt{4\kappa\tau} \quad \text{Thermal penetration depth}$ $\kappa = \frac{\lambda}{\rho c} \quad \text{Thermal conductivity [m²/s]}$

© Fraunhofer ILT

Fraunhofer

Ultra short pulse lasers

Application fields for ultra short pulse laser processing

Mechanical Engineering

- Tool Technology
- Nozzle drilling
- Turbine blade structuring
- Glass processing

Nano Manufacturing

- Nano particle generation
- Multi photon polymerisation
- Functional surface processing
- Laser chemistry

Electronics

- Thin film processing
- Organic electronics
- Trimming
- Mask repair

Photovoltaics

- Thin film processing
- Precision drilling
- Texturing
- Materials modification

Life Science

- Tissue ablation
- Ophtalmologic applications
- Bio fabrication
- Intra cell processing

Metrology

- Optical coherence tomography
- Terahertz technology
- Materials analysis
- Bio diagnostics

© Fraunhofer ILT

Laser Tooling with Ultra Short Pulsed Laser

- Processing time10 Std.
- Ablated volume 100 mm³
- Surface quality similar to EDM-Processing $R_a < 0.3 \ \mu m$
- No EDM-tools necessary

ns-Laser

ps-Laser

🖉 Fraunhofer

EDM

Precision structuring of embossing tools

3D-Structuring of embossing rolls

Material: Copper, chrome-plated Roll: 250 mm diameter, 1 m length Roller rotation speed: 1400 U/min Line scan distance : 2 µm -> surface speed: 15 m/s -> spot distance @ 2 MHz: 7,5 µm Laser power: 100 W Spot size: 10 µm Repetion rate: 3 MHz

- Clear replication of CAD-Data
- No melt and debris
- Surface roughness < 0.5 µm

5 mm

Precision structuring of embossing tools

Micro injection moulding of lens arrays in PMMA

Micro moulding tool for surface structured parts

Laser structuring for functional surfaces

Structuring of injection moulding tool with Pikosecond lasers Lumera Rapid, $\lambda = 355$ nm

Generation of multiple structures Structure size: 10 µm Sub structure: 2 µm Sub-Sub structure: 100 nm

Replication by injection moulding Material: Polypropylen

Laser structuring for functional surfaces

- Contact angle 174°
- Minimal Adhesion
- Rejection of capillary leads to removal of drop
- Drop is fixing on non structured surface

Surface modification with nanostructured tools

- Stainless-steel embossing tool
- Surface structuring with ps laser
- Structure size
 800 nm

- Roll embossing of polymer and Aluminium
- Process speed 180 mm/min

Laser structuring for functional surfaces

Laser structuring of motor components

Aim: Reduction of friction and wear
 Approach: Micro and nano structuring of cylinder liners and piston rings

Use of high power ultra short pulsed lasers

Cylinder liner

Piston ring

Strukturing of piston rings

Processing parameter:

- Lumera SuperRapid (1064nm, 10ps) on Deckel Maho Lasertec 40
- spot size 20µm
- Power: 0,2W
- Scan speed : 120mm/s
- Material: Chromium nitride (PVD) on steel (Stahl)

High speed percussion micro drilling

Foil:

- 50 mm x 160 mm
- Thickness: 50 µm

Hole dimensions:

- ∅ = 13 16 µm
- Distance 50 µm
- 4 Mio Holes
- Processing with Scanner
- Scanfield 10 mm x 10 mmDrilling Speed:
- 1100 Löcher / s

Simulation: Three-Beam Interference in one Plane

Superposition of 3 plane waves, coplanar arragement

$$E(x, z, t) = a\cos(\omega t - k_z z) + \cos(\omega t - k_z z - k_x x) + \cos(\omega t - k_z z + k_x x) + I(x, z) = \pi \left(2 + 2\cos(2k_x x) + a^2 + 4a\cos(k_x x)\right)$$

Simulation: Three-Beam Interference in one Plane

Intention:

Calculation of the sensitivity of the intensity-modulation depending on the alignment of the sample in z-direction

Linestructures in photoresist, periodicity: 2.8µm

optimal alignment

misalignment about : 84µm

Simulation of the

intensity-distribution

of the three coherent beams

Polarization constellation: 0°,0°,0°

Software: Wolfram Mathematica 7

SEM-Image: Hole-structures in Pi* SEM-Image: Rectangular-structures in PI*

Software: Matlab

*Polyimid

Structures on Polyetheretherketone (PEEK):

Homogeneous structures over the entire spot.

Diameter of the spot: 500µm

(Detail)

Diameter of the structure: 1µm Depth of the micro-holes: 600nm

Thin film structuring in solar cell production

P1: Ablation of Molybdenium-LayerP2: Ablation of CIGS-AbsorberP3: Ablation of CIGS and TCO-Layer

Thin film structuring in solar cell production

ns-Laser ablation of CIGS and TCO

- Molydenium deterioration
- CIGS-Melting

ps-Laser ablation of CIGS and TCO

- No Molydenium deterioration
- Low CIGS-Melting

In-volume Selective Laser Etching, "ISLE"

- Process
- 1) Sele the s by fs

2) Sele moc

Examples for High Speed In-volume Micro Structuring

Tubes made of fused silica

Diameter and height: 1 mm v=25 mm/s P=250 mW NA=0.3 Processing time: 60 s

High Resolution Multiphoton Polymerisation

- Polymerisation initiated by absorption of two or more photons requires high photon density
- Polymerized volume is restricted to the focus
- Direct 3D writing of micro-/nano **Structures**
- Large variety of materials:
 - Elastic polymers
 - Inelastic polymers
 - **Biomolecules/proteins**

Engineering, 12, 6

Polymer-Protein Hybrid Structures

High power ultra short pulsed lasers and fast scanners

Development of high power ultrafast lasers

- 10 ps-Laser with 20 MHz Rep-Rate and P = 200 W
- 500 fs-Laser with 80 MHz Rep-Rate and P = 300 W

Development of process adapted high speed optical systems for ultrafast laser ablation

- High speed scanner systems
- Multiple beam optics for increase of ablation rate

Requirements on laser scanning for high repetition rate ultra fast lasers

Pulse overlap 10 – 50 %

Line overlap 10 %

Scanner specifications for typical micro ablation technology

- **D** = 20 μm
- Pulse overlap = 10 µm
- f_{Laser} = 20 MHz
- Scanning speed = 200 m/s

Typical hig Galvo-Scan

Typical high precision Galvo-Scanner

v < 10 m/s

Structuring of embossing rolls

Material: Copper, chrome-plated Roll: 250 mm diameter, 1 m length Roller rotation speed: 1400 U/min Line scan distance : 2 µm -> surface speed: 15 m/s -> spot distance @ 2 MHz: 7,5 µm Laser power: 100 W Spot size: 10 µm Repetion rate: 3 MHz

- Clear replication of CAD-Data
- No melt and debris
- Surface roughness < 0.5 μ m

5 mm

High speed scanning technologies

Polygonial mirror Single line scan Scanning angles > 20° Scanning speed > 100 m/s

Acustooptic deflectors x-y-scanning Scanning angles < 2° Scanning speed > 100 m/s

Phased array deflectors Single line scanning Scanning angles > 20° Scanning speed > 500 m/s for EO-devices

Requirement from ultrafast laser machining @ f = 50 MHz and d_{spot} = 20 μm

Scanning speed v = 500 - 1000 m/s

High speed ablation with superimposed AOD and Galvo

High speed polygon scanning system

- Laser system: Slab-Amplifier with Lumera Oscillator
 - Pulse duration: 12ps
 - Reprate: 10.7 MHz
 - Max. power: 230W (21.5µJ)
- Polygon with 12 facets
- Scan speed: max. 320 m/s
- F-theta Linse f= 250 mm
- Fokusdurchmesser: 60µm
- Next step: Combination with Galvo Scanner

Multi parallel processing with diffractive optical elements

High speed processing with ultra short pulsed lasers

- Laser processes:
 - Drilling
 - Surface structuring
- Applications:
 - Production of large filters with micro holes for water treatment
 - Production of microscaled vaporization masks for thin film deposition
 - Functional surface structuring
- State of the art
 - Etching, mechanical drilling, lithography
- Challenges :
 - High ablation rates
 - Large areas

Functional Surfaces by selective Surface roughening

- Ablation of 10-30 layers with ultra short pulsed lasers and high laser intensity
- generation of structures with high structural aspect ratio (>10) and high absorbance of light (<95%)</p>
- Applications
 - Optical absorber
 - scattering area on transparent parts
 - Change of wetting behaviour
 - Surface enlargement

Cutting and ablation of fiber reinforces polymers

Low impact processing of CFRP

- Cutting
- Trimming
- Drilling
- Partial ablation
- Surface preparation
- -> No delamination
- -> No thermal degradation

Carbon FRP t_{Pulse} = 500 fs Rep.-rate: 5.9 MHz Pulsenergie: 25 µJ V_{Scan}: 100 m/s Ablation rate: 120 mm³/s

Glass FRP t_{Pulse} = 10ps Rep.-rate: 100 kHz Pulsenergie: 30µJ V_{scan}: 1m/s Ablation rate: 25µm

Future Developments – High Precision at Large Components

Cutting of fiber reinforced polymers

Surface structuring

Large area processing

Low friction surfaces

Thank you very much for attention

Dr. Arnold Gillner

Fraunhofer Institut für Lasertechnik
Steinbachstraße 15
D-52074 Aachen
Tel: 0241 8906 -148
Fax: 0241 8906 -121

Email: arnold.gillner@ilt.fraunhofer.de

web.: www.ilt.fraunhofer.de

Save the Date

2. Aachener
 Ultrakurzpuls-Workshop
 17. – 18. April 2013

