

Picosecond Laser Machining of Optical Fibre Based Cantilever Sensors

<u>Frank Albri*</u>, Jun Li, Robert R J Maier, William N MacPherson, Duncan P Hand

Institute of Photonics and Quantum Sciences Heriot-Watt University, Edinburgh, Scotland

*Contact: fa192@hw.ac.uk

Picosecond-laser manufacturing of cantilever fibre optics sensing devices

- Introduction
 - Fibre sensing
 - Cantilevers
 - Picosecond laser manufacturing
- Fibre cantilever design and operation
- Manufacturing setup and process
- Results

Fibre optic sensing

Advantages of fibre sensing:

- Small (typ. Ø=125 μm)
- Temperature stability (up to 1000 °C in some applications)
- Long distance to analytical instruments
- Large variety of sensing possibilities
- High accuracy and no alignment needed (in our case)
- Good knowledge of fibre technology

Cantilevers

- Well known (AFM)
- Many application areas
 - Vibration
 - Acceleration
 - Force
 - ...
- Bio-medical applications enabled through coatings

Conventional cantilever interrogation:

- Piezo-resistive method
 - Constraint in some EMI environmen
- Optical beam deflection
 - Alignment is complicated

Optical fibre cantilever

- High accuracy and no alignment during fabrication
- Combining sensing and interrogation
- Enable applications in space constrained environments

	ns-laser	ps-laser	fs-laser	Focused Ion Beam
Heat affect zone	Large	small	small	N.A.
Ablation rate	very high	high	Low (limited by av. power)	lowest
Surface finish	cracking	scattering (R _a ≈400nm)	scattering (R _a ≈200nm)	Optical quality (R _a <10nm)
Examples	100 μm a)	100 µm	100 µm	4 μm

a) Raluca A. Negres, Mary A. Norton, David A. Cross, and Christopher W. Carr Optics Express, Vol. 18, Issue 19, pp. 19966-19976 (2010)

Previous work

- Previous work on fibre-top cantilever
 - Using FIB machining (very time consuming ~4h)
 - Femtosecond laser + etching (two processing steps ~1h)

(D Iannuzzi et al. "Carving fiber-top cantilevers with femtosecond laser micromachining",2008, J. Micromech. Microeng. 18 035005; D Iannuzzi et al, "Fibre-top cantilevers: design, fabrication and applications", 2007 Meas. Sci. Technol. 18 3247)

Manufacturing setup

James Watt Institute

High Value Manufacturing

- Cantilever less than 10 µm thickness
- No cracking in fibre and cantilever
- Optical or near optical quality of the surfaces
- Very good control over the wall angle
- Short machining time
- Scalability for industrial production

lames Watt nstitute

> igh Value Ianufacturinc

 Low energy cracking in fibre at 6 µJ pulse energy

 High energy cracking in ridge at 16 µJ pulse energy

• Strong tapering angle prevents sensor operation

- Possible Solutions:
 - Optimization of laser parameters (correlation between pulse energy and tapering angle)
 - Goniometers for rotation by desired angle

Laser machining a fibre

- Wall angle depending on pulse energy
- Cracking at to high energy
- Cracking deeper inside fibre with to low energy
- Find energy for lowest cracking
- Correct for wall angle

James Watt Institute

High Value Manufacturing

Scheme of machining

Scheme of machining

Achieving parallel surfaces

• Without tilting the fibre

Tilted 8°

Tilted 12°

Second cut for parallel surfaces

Problem with debris deposition

- 5µm thick layer of debris in centre
- Not removable with Ultrasonic bath
- Reduces signal

James Watt

High Value Manufacturinc

Institute

James Watt Institute for High Value Manufacturing

Second cut for parallel surfaces

- Central structure
 collects debris
- Only very small cut needed to remove

Second cut for parallel surfaces

- All surfaces parallel
- Low debris deposition
- Repeatable with less than 10 µm thickness

James Watt Institute

High Value Manufacturing

Actuation example

Research Centres

- Cantilever structures out of fused silica fibre by ps-laser ablation
- Used as sensors for simple actuation experiments
- Stable results over 2.7 μ m actuation
- Accuracy of < 10 nm
- Manufacturing time for a cantilever < 1 min.
- Process easily adopts to mass manufacture

Acknowledgments

Engineering and Physical Sciences Research Council

apply innovation[™]

