

James Watt Institute Innovative Manufacturing Research Centre Conference, July 8, 2011

On the Use of Underactuation in Adaptive Robotic Grasping

Clément Gosselin Canada Research Chair Département de génie mécanique Université Laval Québec, Canada

Contents

- Grasping: definition
- Underactuation: definition, objectives
- Underactuated grasping
- The Laval hands
- Industrial and commercial applications
- Conclusions

Grasping

-3-

- To stably constrain an object (graspers are different from manipulation interfaces)
- Form closure: the object is geometrically constrained
- Force closure: the grasp can be maintained for any object wrench (friction is introduced)

Underactuation

- Fewer actuators than degrees of freedom
- In fact, most mechanical systems exhibit some form of underactuation (e.g. flexible robots)

Underactuation in grasping

- Use underactuation to perform grasping tasks with a minimum number of actuators
- Design problem: exploit underactuation in order to produce a certain 'behaviour'
- Fundamental Issue: how can we formulate this design problem mathematically?
- Necessary to make simplifying assumptions

Illustration of the basic principle

Examples of underactuated hands

The Laval hands

- Modelling of underactuated hands
- Several prototypes built over the last two decades
- Some of the designs have been commercialized

General concepts and initial experiments

1994

First fully functional hand (MARS): 12 dofs – 6 actuators

1996

Laboratoire de robotique

THE SARAH HAND 10dofs – 2 actuators (2000)

SARAH (Self-Adaptative Robotic Auxiliary Hand)

10 dofs and 2 actuators 3 configurations: cylindrical, spherical and planar

-14-

EXPERIMENTAL VALIDATION OF THE SARAH HAND

2002

- Delivered to MDA
- Tested at CSA on the STVF robot

APPLICATIONS IN TELE-SURGERY : Elastically deformable components

APPLICATIONS IN PROSTHETICS AND HUMANOIDS

Clément Gosselin

2005

APPLICATIONS IN NUCLEAR INDUSTRY

Built for UKAEA and delivered in 2006

In operation since then

Commercialization (Robotiq)

-19-

2009

Clément Gosselin

Laboratoire de robotique

Robotic hands currently under development 5-finger 4-actuator robotic hand (NAMUH)

Clément Gosselin

Laboratoire de robotique

Robotic hands currently under development

• 5-finger 1-actuator prosthetic hand with reconfigurable thumb

• 5-finger 1-actuator prosthetic hand with reconfigurable thumb

Clément Gosselin

Laboratoire de robotique

• 5-finger 1-actuator prosthetic hand with reconfigurable thumb

Conclusions

- Underactuation is the most promising avenue for the development of robotic hands
- Mathematical modelling still poses several challenges
- Recent progress in actuators and sensors makes the development of effective underactuated robotic hands possible
- Many areas of application are open including industrial robotics

Acknowledgements

Graduate students, research personnel, collaborators:

Louis-Alexis Allen-Demers, Mathieu Baril, Lionel Birglen, Éric Boudreau, Gabriel Côté, Eric Dégoulange, François Deschênes, François Guay, Just Herder, Jean-Philippe Jobin, Thierry Laliberté, Sylvain Lemieux, Bruno Massa, Serge Montambault, Mathieu Myrand, Frédéric Pelletier, Cyril Quennouelle, Laura Sie

Funding:

NSERC, CRC, FQRNT, MDA, CSA, Precarn, UKAEA, IRSST

Acknowledgements

Laval Robotics Laboratory's Team:

Merci à toute l'équipe du laboratoire de robotique!

