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Georgia Tech

e 20,000 undergraduate and
graduate students

« 800+ faculty
e >$300M in research funding =
- Located in downtown Atlanta &

e GT was the Olympic Village
for 1996 Summer Games
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Mechanical Engineering
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Overview

e Additive Manufacturing

» Cellular Structures
— Construction
— Optimization

* Integrate Materials into Computer-Aided Design
— Simultaneous product-material-process design

— Process-structure-property relationships

 Exposure Controlled Projection Lithography
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Additive Manufacturing

e Class of manufacturing processes that build
parts one layer at a time.

o Stereolithography, Selective Laser Sintering,
Fused Deposition Modeling, ...
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AM Unigue Capabillities

 Shape Complexity P »
 Material Complexity

e Hierarchical Complexity

Metal Bond coat FOM  Ceratnic

* Functional Complexity
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Hearing Aid Shells

Create
Impression

Scan Impression Rapid
Shell

--------

Create CAD mc

< |

Assemble components
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Invisalign Manufacturing Process

align’ Manufacturing Process

Timeline
[

> > > > > >

Receiving & Dental Data Treat SLAMold Aligner
Order Entry Laboratory Acquisition Operations Fabrication Fabrication

. STL Fie Generation

] . Packing (orient & place)
Prepare & Slice «  Support Generation

. Slice Data

. Laser (Scanning)
Re-coat (dipin resin)

. Sweep (remove excess
resin)

. Part Removal & Post-

Cure

Verify test parts
. Conduct individual mold
inspection

Quality Control

Kit in transportation box
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Overview
« Additive Manufacturing
» Cellular Structures
— Construction
— Optimization
* |Integrate Materials into Computer-Aided Design

— Simultaneous product-material-process design

— Process-structure-property relationships

 Exposure Controlled Projection Lithography
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Cellular Structures

When modern man builds large load-bearing structures, he uses dense solids;
steel, concrete, glass.

When nature does the same, she generally uses cellular materials; wood,
bone, coral.

/7 _5'”7 e
There must be a reason for it. == § S .}Tff-; Q_’:“n
L LY | 4
- Michael F. Ashby, Anthony Evans, et al.; o ® 0 4
Metal Foams: A Design Guide “'ﬁ’
LN T
Dinphysis. L Y

Distal
epiphysis

“n ¥

: ﬁ 7>
THE SR W oDRURF

'S =

| Linear cellular alloy parts[McDowell, 2004]
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Design For Additive Manufacturing

Low volume ratio structure
(Adaptive Material Distribution)

RN

Multi-functionality: Multi-functionality:
Structure + Heat Transfer Structure + Acoustics

-
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Design and CAD Methods




CAD Representations

* Purely geometry in CAD systems

 Boundary Representation solid modeling
— all geometric details are always represented
— 1-2000 geometric entities Is limit

e Parametric dimensions
— adjustable geometry © O
 Complicated topology
_ O O 2
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Conformal Lattice Structures
— — = —

-
CAD or COMPUTE Populate Conformal
3D Conformal 2 Cellular
STL Conformal Maesh sl Model
Model Mesh Cells
\_
16\
14\
N 12\
10\
:
6\
0
2
4 0
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UAV & Micro-UAV Examples
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Application to UAV Fuselage

5P NX 7.5 - Gateway - [UAVwithSTL. prt]

J_I_ Eile Edit Miew Format Tools Assemblies Information  Analysis  Preferences ‘Window Help

DY stane ] % k| ¥ O WCommandFmder % E g E:ﬁ -E!j ; I:l ‘-ﬂ"’ 5?:‘?.

{No Selection Filter [ iEntlre Assembly b R Bl e = 'h.. N

5elect objects and use ME3, or double-click an object

(< >]

T e el b Il e ¥V, TTH\JI—)RUFF
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Size Matching & Scaling (SMS)
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Micro Air Vehicle:
Problem Definition

Tail
I:Motor

/—\

Fpayload
F Motor(N) 5.9
F 1 (N) 2.7
F payioad (N/mm?) 0.1
Target Volume (mm?3) 100,000
Total Unit-Cell Count 214
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Optimized MAV Fuselage
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Overview

« Additive Manufacturing

e Cellular Structures

— Construction

— Optimization

* Integrate Materials into Computer-Aided
Design

— Simultaneous product-material-process design

— Process-structure-property relationships

 Exposure Controlled Projection Lithography
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Structure-Property Relationship

« 750° C
m 850° C
a 950° C
* 1050° C

Hardness

500 1000 1500 2000 2500 3000

Distance from surface ( pm)

Low carbon steel Materials Chemistry and Physics, 112:1099-1105, 200 8.
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Motivation

CAD system

Macro-scale

t

Decomposition
(lower resolution)
|| | | |

Microstructure

Image Radon
p— Transform Microstructure
Model
Wavelet

* Fiber properties

Transform . .
» Matrix properties

Computational
Materials Design
Methods

i

> Property
S, S, 0 Material I|brarv3
=ls, S, O 0’2 g DATABASE
0 0 a‘f; y12 I
Micro-scale

THE GEORGE W.WOODRUFF 1%
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Simultaneous Product / Material / Process Design Me

Design Problem
Formulation

Multi-Objective I
Optimization
Methods

Common
Computer-Aided
Design Models
for Parts and
Microstructure

= L0Uene or EngmecTing

thods

Process Design

Find: process variables
Satisfy: process constraints

Minimize: time, cost

Materials Design

»

»

Find: volume fractions, grain
size, shape

Satisfy: compatibility
constraints

Maximize: energy
absorption, mech properties

<

Part/Product Design

»

»

Find: dimension values
Satisfy: stress, strain

Maximize: energy
absorption

Encoding of microstructure using
Surfacelet coefficients

@ = o
ol o s
x7

“Zoom-in” and “Zoom-out” operations

enabled bv Surfacelet model
CAD methods enabled by geometric model based on wav

.
|
|
|

elets and new surfacelets

e



Dual-Rep Approach

« Common geometric model for macro
geometry and microstructure.

 Wavelets support multi-resolution
modeling.
— Extend to multi-scale.

— Represent distributions of material,
properties

— inefficient in representing curve and
surface singularities.
o Surfacelet: proposed complement to
wavelets for representing
boundaries.

rl(cosb co®m[Xx+ cob sialy+ simlz —b)2

ya,b,a,b,rl,r2 (r) = a—l/Zy a_1|:

. sina fx + cos w)z ODRUFF @)
SCHOOL OF MECHANICAL ENGINEERING 7))




Physical CaP-PHB

100 150 200 250

a) Radon transform b) inverse Radon transform

Wavelet decomposition level 4

g

A0 e 100 180 10 15 20 25 30
c) inverse wavelet transform d) inverse Radon transform
0~3°& 120~125°
o o
1791800 45500 so-o5 135~140°

THE GEORGEW.WOODRUFF
SCHOOL OF MECHANICAL ENGINEERING

(

=L
by )
e LA




Three-CaP PHB fiber

 Compute Mechanical Property From
microstructure

— Resultant elastic modulus matrix”

393 0.793 O
E=1e9 0.793 3.26 O
0 0O | 1.59

— Rule-of mixture : E_+=3.45 GPa
— Inverse rule-of mixture: E_;=1.14 Gpa

*Kalidindi, S.R. and J.R. Houskamp 2007
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IN10O Example
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Computational Materials Design

N-Dimensional Space Representing the Set
of All Potential Microstructures

Laser
Melting

Available Manufacturing o2 U -
Options —_—

-:- Rating for Selected

- Performance Criterion
High Low

Figure courtesy Dr. Surya Kalidindi, Drexel Univers ity
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Overview

« Additive Manufacturing

» Cellular Structures
— Construction
— Optimization

* Integrate Materials into Computer-Aided Design
— Simultaneous product-material-process design

— Process-structure-property relationships

e Exposure Controlled Projection Lithography
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Exposure Controlled Projection
Lithography

|
Reaction
-
Imaging chamber
A lens Cured
Engineered Part X
diffuser ,— I
Laser i ' — \ Glassslide
; : Computer
™ UV irradiation
Collimating
lens
DMD

A more realistic model to predict the cured shagefgiven
exposure profile is required

2
Exposure (E) €-> Cured height (z)

Georgiallis s THE GEORGE W.WOODRUFF  #0%
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ECPL Process Overview

Resin Chamber
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g
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Beam Conditioning & &
Systen ) &‘

Projection|
UV LED System |

Source
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Samples Fabricated with ECPL

* Lenses ranging from 100pum to 10mm in a
variety of shapes, with sag heights ranging from
80um to 300pum
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Real Time Monitoring System —
System Overview

Detector
£
-~ V.
[ ||
Projection
system
Beam
LApeoLIce ——> conditioning == DMD™
(365nm)
system
-
4 a4
L N EW.WOODRUFF #61%
ﬁﬂ@% o) Exposure Controlled §Qises| R {-HEOLRRRYAL ENGINEERING g‘
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Real Time Monitoring System
(Discrete point)

Detector

Beam

Splitter Laser

Substrate

Projection
Optics

DMD™

GEORGEWW{:}QE%@F N (A
SCHOOL OF MECHANICAL ENGINEERING 7))




Working Principle

e Optical Path length, L = nt
 Round trip optical path length:(4n.t, + 2n.t)

 Change In optical thickness by photocuring,
AL=2An_t.

e Phase shift T
@A=2 T AL/ A [ Laser
@=4 m An_t./ A
* n : refractive index Y
e t : thickness t.n, == | ] ty Ny

Georgia THE GEORGE W.WOODRUFF "3 :
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Snapshot of measuring the cured
part from confocal microscope

Gecorgial e
cifechrooay
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Experimental Results

~60 radians |

Estimated
Height

105 um
64 um

Measured
Height

100 um
66 um

e RN |
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Conclusions

e Cellular materials are basis for lightweight structure
design: repeated units arrayed along surfaces or fill
volumes.

e TrussCreator NX: plug-in for commercial CAD that
enables design, FEA, optimization of lattice structure.

 Take Advantage of AM geometric freedom.

e Size Matching & Scaling optimization method is efficient
(2 variables) and effective.

 Progress toward material (process-structure-property
relationships) integrated into Computer-Aided Design
systems.
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Roadmap for

Additive Manufacturing Workshop
March 2009, US NSF, ONR funded

Identifying the Future of
Freeform Processing

2009

http://www.wohlersassociates.com/roadmap2009.html|
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ENOINEENIND

15BN 97E-1-4419-1119-3

2 III!J}
SpringEr.m

Additive Muorwfecrarimg  Technofogies  Ropad
Frotodypring to Divecs Digioel M faciurmy deals
with varions spects of joining matertals to foem
parie. Additive Mamnfacioring {AM) Is a0 swio-
maled lechnique for died oovesion of 30
CATD dats frete phiysical objects nsing 3 varety af
approaches. Mammfsctnrers have been wsing hese
technobogies In onder o0 redoce development
cyche times and get thetr products o the mariet
qubcker, moire cost effectively, and with added
vale due to the incorporation of mestomizmbie
feainres. Realiring the potential of AM applica-
tioms, 4 Earge number of processes have been
developed allowing the mse of varioos materials
ranging froam plastics to metals for  produoct
developmenl Anthors lan Gitson, David W
Rosen and Brent Stncker explain these temes, as
well az

= Providing 2 comprehenstee overview of AM
techmobogies phas descriptions of sgpport
technologies hke software systems and
post-processing approaches

= [Mscossing the wide wariety of new md
emenging apphcations e micro-scale AM,
medical applications, direct wiite electronic
amd Direct Dagital Mamfacining of end-nse
OEnponeniE

= Iniroducing systemeatic solutions for process
el eciion and design for AM

Additive Mewnfocearing  Techemiogies R
Preryping fo Direoy Dgiaal Mumufacturing is the
perfect book for researchers, sindents, practicing
enginesrs, entrepreneurs, and mamfacturing
industry professionals interested In additive
manufaciuring.

PTG + UASOY * BOST

I

buunpenuey Lybig pasg 0 budoreyg pidey
saibojoutpa] buunpenueyy aanippy

lan Gibson

David W. Rosen
Brent Stucker

e e e R e e B e e e

Additive

Manufacturing
Technologies

Rapid Prototyping to
Direct Digital Manufacturing




Thank you!
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